
Experimenting with superposition in iProver
André Duarte Konstantin Korovin

University of Manchester, {andre.duarte,konstantin.korovin}@manchester.ac.uk

Abstract: In this work we extend iProver with support for the superposition calculus. Then, we
develop a flexible simplification setup that subsumes and generalises common architectures such as
Discount or Otter. This also includes the concept of “immediate simplification”, wherein newly derived
clauses are more aggressively simplified among themselves, which can make the given clause redundant
and thus its children discarded.

1 Introduction

iProver [1] is an automated theorem prover for first-order
logic. It implements primarily the Inst-Gen calculus,
but it also implements resolution and supports running
them in combination. In this work we extend iProver
with support for the superposition calculus.

Superposition is a set of inference rules that is com-
plete for first-order logic with equality predicates only
(and therefore for all first-order logic via an embedding
in the former fragment). We do not present it here (see
e.g. [2]).
The calculus is performed in a conventional given

clause loop [3]. In iProver, it can either be run stan-
dalone, or in combination with the main instantiation
calculus. In the latter mode, superposition is run sim-
ultaneously with instantiation to generate clauses for
simplifications in the instantiation loop (but not to per-
form instantiation inferences).

2 Simplifications

Apart from the generating inferences, necessary for com-
pleteness, we can add simplification inferences. These
are inferences where some or all of the premises are
deleted. They are not required for completeness but
are crucial for performance. In this work, we use the
following rules (where a ((((((crossed out premise indicates
that it can be deleted after adding the conclusion):

Tautology deletion ���
�

l ∨ l ∨ C (((
((t = t ∨ C

(1)

Syntactic eq. res. ��
���t 6= t ∨ C

(2)

Subsumption ���
�

Cθ ∨D C
(3)

Subset subsumption
���C ∨D C

(4)

Subsumption res.
p ∨ C ���q ∨D

D
(5)

where there exists θ such that (p ∨ C)θ ⊆ q ∨D.

Demodulation
l = r ��

�C[lθ]
C[lθ 7→ rθ]

(6)

where lθ � rθ and {lθ = rθ} ≺ C[lθ 7→ rθ].

Light normalisation In addition, we introduce the fol-
lowing rule:

Light normalisation l = r �
�C[l]

C[l 7→ r]
(7)

which is a special case of the demodulation rule. It’s ad-
vantageous to formulate this separately because it may
be implemented much more efficiently than demodula-
tion (simple replacement, no instantiation), and as such
we may want e.g. to apply light normalisation wrt. all
clauses but demodulation only wrt. active clauses

Simplification scheduling How these simplifications
are performed can greatly impact the performance of
the solver, so care is needed, and tuning this part of
the solver can pay off significantly. We can choose to
perform some simplifications at different times, or not at
all. Additionally, some of these simplifications require
auxiliary data structures (here referred to generally as
‘indices’) to be done efficiently, and some indices support
several rules. Therefore we also need to choose which
clauses to add to each indices at which stages.

For example, Otter-style loops [3] perform simplifica-
tions on clauses before adding them to the passive set.
The problem with that is that the passive set is often
orders of magnitude larger than the active set, there-
fore performance will degrade significantly as this set
grows, and the system will spend most of its time per-
forming simplifications on clauses that may not even
end up being used. On the other hand, Discount-style
loops [4] perform simplifications only with clauses that
have been added to the active set. This has the bene-
fit of reducing the time spent in simplifications, at the
cost of potentially missing many valuable simplifications
wrt. passive clauses. It is not clear where the “sweet
spot” is, in terms of these setups, so we want a flexible
configuration to experiment with and compare different
approaches.

Immediate simplification In addition, we also intro-
duce the idea of immediate simplification. The intuition
is as follows. Clauses that are derived in each loop are
“related” to each other. It may be beneficial to keep
the set of immediate conclusions inter-simplified. Also,



throughout the execution of the program the set of gen-
erated clauses in each loop remains small compared to
the set of passive or active clauses. Therefore, we can
get away with applying more expensive rules that we
don’t necessarily want to apply on the set of all clauses
(e.g. only “light” simplifications between newly derived
clauses and passive clauses, but more expensive “full”
simplifications among newly derived clauses). Finally,
during this process, it is possible that the given clause
itself becomes redundant (e.g. subsumed by one of its
children). If this happens, we can add the responsible
clauses to the passive set, remove the given clause from
the set, and then throw away this iteration’s newly gen-
erated clauses and abort the iteration and proceed to
the next given clause. This may speed things up if many
iterations are thus aborted.
Also, we may want to apply a distinct set of (more

expensive) simplifications among the input clauses. We
also take this into consideration.

Simplification setup We propose a general and flexible
framework to specify how these simplifications are per-
formed. This lets us experiment with and evaluate many
different configurations. In pseudocode:
input_set = ∅
for i in input_clauses:

simplify(i wrt input_set via input)
add(i to indices_input)

add(input_set to indices_passive)

main_set = ∅
loop:

immed_set = ∅
given = take(clause from passive)
simplify(given wrt main_set via

rules_active)
add(given to indices_active)
for i in all generating inferences between

given and active:
simplify(i wrt immed_set via rules_immed)
if given was eliminated in immed_set

by clauses:
add(clauses to indices_passive)
goto loop

simplify(i wrt main_set via rules_passive)
add(i to indices_immed)

add(immed_set to indices_passive)

where add(clause to indices) adds a clause to some
simplification indices, and simplify(clause wrt set
via rules) simplifies a clause, via a set of rules, by
some clause(s) in set.
This general scheme gives great flexibility for the

user to specify which simplifications are done at which
stages. Namely, we can specify: to which indices are
clauses added after generation (indices_passive), after
adding to passive (indices_active), during immedi-
ate simplification (indices_immed), during input pre-
processing (indices_input); also which simplifications
are done before activation (rules_active), after genera-
tuion, wrt. the main set (rules_passive), and wrt. the
immediate set (rules_immed), and among input clauses
(rules_input).

An Otter loop would be
indices_passive = all rules_passive = ∅
indices_active = ∅ rules_active = all

while a Discount loop would be
indices_passive = ∅ rules_passive = ∅
indices_active = all rules_active = all

with the rest =∅. In our experiments we will test several
distinct setups.

Simultaneous superposition Another improvement is
the usage of “simultaneous superposition” [5]. Recall
the superposition rule:

l = r ∨ C t[s] .= u ∨D
(t[s 7→ r] = u ∨ C ∨D)θ

(8)

where θ = mgu(l, s), lθ � rθ, tθ � uθ, and s is not a vari-
able. The conventional rule is that by t[s] and t[s 7→ r]
we mean resp. “a distinguished occurrence of s as a sub-
term of t” and “replacing that subterm at that position
by r. We call the variant simultaneous superposition
where we mean instead “replacing all occurrences of s
in t by r”. This variant is still refutationally complete.

3 Results

We integrated the simultaneous superposition calculus
into iProver and evaluated it over 15 168 first-order prob-
lems in TPTP-v7.2.0. The superposition loop can solve
7375 (49%), the instantiation loop (on the previous ver-
sion of iProver) 7884 (52%), and their combination can
solve 8708 (57%). Therefore we can conclude that com-
bination with superposition improved the performance
of iProver over the whole TPTP.

References

[1] K. Korovin, “Inst-Gen — A Modular Approach to
Instantiation-Based Automated Reasoning,” in Pro-
gramming Logics (A. Voronkov and C. Weidenbach,
eds.), vol. 7797, pp. 239–270, Springer Berlin Heidel-
berg.

[2] J. A. Robinson, Handbook of automated reasoning.
Elsevier MIT Press, 2001.

[3] W. McCune, “OTTER 3.3 reference manual,” CoRR,
vol. cs.SC/0310056, 2003.

[4] J. Denzinger, M. Kronenburg, and S. Schulz, “DIS-
COUNT — A distributed and learning equational
prover,” Journal of Automated Reasoning, vol. 18,
pp. 189–198, Apr 1997.

[5] D. Benanav, “Simultaneous paramodulation,” in
10th International Conference on Automated Deduc-
tion, Kaiserslautern, FRG, July 24-27, 1990, Pro-
ceedings, pp. 442–455, 1990.


