
AC simplifications and closure redundancy
in the superposition calculus

André Duarte Konstantin Korovin

andrepd@protonmail.com

8th September 2021



Introduction Superposition Simplifications Implementation

Introduction

First-order automated theorem provers are powerful tools for general-
purpose problem solving, with many applications:
• Mathematics,
• Software verification, hardware verification,
• Knowledge-base reasoning and ontologies,
• Routines in higher-order provers
• Etc.

Main advantage
• Very general and expressive

Disadvantage
• Struggles in certain domains

and even in simple problems

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021
1



Introduction Superposition Simplifications Implementation

Introduction

First-order automated theorem provers are powerful tools for general-
purpose problem solving, with many applications:
• Mathematics,
• Software verification, hardware verification,
• Knowledge-base reasoning and ontologies,
• Routines in higher-order provers
• Etc.

Main advantage
• Very general and expressive

Disadvantage
• Struggles in certain domains

and even in simple problems

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021
1



Introduction Superposition Simplifications Implementation

Associativity-commutativity

A binary function ‘+’ is associative-commutative (AC) if

x+ y ≈ y + x (x+ y) + z ≈ x+ (y + z)

Ubiquitous, contained in important theories such as arithmetic, etc.

Problem: under superposition, these equations recombine to produce an
infinite number of consequences

x+ (y + z) ≈ z + (x+ y)

x+ (y + z) ≈ y + (z + x)

x+ (y + z) ≈ (y + z) + x

x+ (y + (z + w)) ≈ (y + (z + w)) + x

. . .

(more precisely, there are n!×
(

(2n−2)!
(n−1)!n!

)2
equations for n variables)

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021
2



Introduction Superposition Simplifications Implementation

Associativity-commutativity

A binary function ‘+’ is associative-commutative (AC) if

x+ y ≈ y + x (x+ y) + z ≈ x+ (y + z)

Ubiquitous, contained in important theories such as arithmetic, etc.

Problem: under superposition, these equations recombine to produce an
infinite number of consequences

x+ (y + z) ≈ z + (x+ y)

x+ (y + z) ≈ y + (z + x)

x+ (y + z) ≈ (y + z) + x

x+ (y + (z + w)) ≈ (y + (z + w)) + x

. . .

(more precisely, there are n!×
(

(2n−2)!
(n−1)!n!

)2
equations for n variables)

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021
2



Introduction Superposition Simplifications Implementation

Associativity-commutativity

A binary function ‘+’ is associative-commutative (AC) if

x+ y ≈ y + x (x+ y) + z ≈ x+ (y + z)

Ubiquitous, contained in important theories such as arithmetic, etc.

Problem: under superposition, these equations recombine to produce an
infinite number of consequences

x+ (y + z) ≈ z + (x+ y)

x+ (y + z) ≈ y + (z + x)

x+ (y + z) ≈ (y + z) + x

x+ (y + (z + w)) ≈ (y + (z + w)) + x

. . .

(more precisely, there are n!×
(

(2n−2)!
(n−1)!n!

)2
equations for n variables)

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021
2



Introduction Superposition Simplifications Implementation

Ground joinability

Due to its importance, AC has been the object of active research for
decades.

Knuth-Bendix completion–based provers use ground joinability criteria to
delete equations s ≈ t where s and t are equal modulo AC [Martin et al
1990, Avenhaus et al 2003]

Examples: Waldmeister, Twee, etc.
Very good performance!

Limitations: known proofs apply to Knuth-Bendix completion (i.e. unit
equality only) and are based on the technique of proof orderings.

There existed no proof for full clausal first-order logic, up to now.

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021
3



Introduction Superposition Simplifications Implementation

Ground joinability

Due to its importance, AC has been the object of active research for
decades.

Knuth-Bendix completion–based provers use ground joinability criteria to
delete equations s ≈ t where s and t are equal modulo AC [Martin et al
1990, Avenhaus et al 2003]

Examples: Waldmeister, Twee, etc.

Very good performance!

Limitations: known proofs apply to Knuth-Bendix completion (i.e. unit
equality only) and are based on the technique of proof orderings.

There existed no proof for full clausal first-order logic, up to now.

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021
3



Introduction Superposition Simplifications Implementation

Ground joinability

Due to its importance, AC has been the object of active research for
decades.

Knuth-Bendix completion–based provers use ground joinability criteria to
delete equations s ≈ t where s and t are equal modulo AC [Martin et al
1990, Avenhaus et al 2003]

Examples: Waldmeister, Twee, etc.
Very good performance!

Limitations: known proofs apply to Knuth-Bendix completion (i.e. unit
equality only) and are based on the technique of proof orderings.

There existed no proof for full clausal first-order logic, up to now.

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021
3



Introduction Superposition Simplifications Implementation

Ground joinability

Due to its importance, AC has been the object of active research for
decades.

Knuth-Bendix completion–based provers use ground joinability criteria to
delete equations s ≈ t where s and t are equal modulo AC [Martin et al
1990, Avenhaus et al 2003]

Examples: Waldmeister, Twee, etc.
Very good performance!

Limitations: known proofs apply to Knuth-Bendix completion (i.e. unit
equality only) and are based on the technique of proof orderings.

There existed no proof for full clausal first-order logic, up to now.

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021
3



Introduction Superposition Simplifications Implementation

Results

Main results of this paper:
• New notion of closure redundancy, which can be used to justify AC

simplifications;

• Proof that the superposition calculus is refutationally complete wrt.
“saturation up to closure redundancy”;

• As corollaries, that ground joinability is a redundancy for the
superposition calculus, as well as stronger AC normalisation and
encompassment demodulation;

• That the proof also opens up the door for further AC simplifi-
cations in the future (currently being researched)

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021
4



Introduction Superposition Simplifications Implementation

Results

Main results of this paper:
• New notion of closure redundancy, which can be used to justify AC

simplifications;
• Proof that the superposition calculus is refutationally complete wrt.

“saturation up to closure redundancy”;

• As corollaries, that ground joinability is a redundancy for the
superposition calculus, as well as stronger AC normalisation and
encompassment demodulation;

• That the proof also opens up the door for further AC simplifi-
cations in the future (currently being researched)

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021
4



Introduction Superposition Simplifications Implementation

Results

Main results of this paper:
• New notion of closure redundancy, which can be used to justify AC

simplifications;
• Proof that the superposition calculus is refutationally complete wrt.

“saturation up to closure redundancy”;
• As corollaries, that ground joinability is a redundancy for the

superposition calculus, as well as stronger AC normalisation and
encompassment demodulation;

• That the proof also opens up the door for further AC simplifi-
cations in the future (currently being researched)

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021
4



Introduction Superposition Simplifications Implementation

Results

Main results of this paper:
• New notion of closure redundancy, which can be used to justify AC

simplifications;
• Proof that the superposition calculus is refutationally complete wrt.

“saturation up to closure redundancy”;
• As corollaries, that ground joinability is a redundancy for the

superposition calculus, as well as stronger AC normalisation and
encompassment demodulation;

• That the proof also opens up the door for further AC simplifi-
cations in the future (currently being researched)

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021
4



Introduction Superposition Simplifications Implementation

Superposition

Superposition is comprised of the following inference rules:

Superposition
l ≈ r ∨ C s[u] ≈̇ t ∨D

(s[u 7→ r] ≈̇ t ∨ C ∨D)θ
,

where θ = mgu(l, u),
lθ ⪯̸ rθ, sθ ⪯̸ tθ,
and s not a variable,

Eq. Resolution
s ̸≈ t ∨ C

Cθ
, where θ = mgu(s, t),

Eq. Factoring
s≈ t ∨ s′ ≈ t′ ∨ C

(s≈ t ∨ t ̸≈ t′ ∨ C)θ
,

where θ = mgu(s, s′),
sθ ⪯̸ tθ and tθ ⪯̸ t′θ,

These rules, when applied exhaustively, are refutationally complete: if a
set of clauses is unsatisfiable then there is a refutation in finite steps, if
it is satisfiable, it may stop or loop forever.

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021
5



Introduction Superposition Simplifications Implementation

Superposition

Superposition is comprised of the following inference rules:

Superposition
l ≈ r ∨ C s[u] ≈̇ t ∨D

(s[u 7→ r] ≈̇ t ∨ C ∨D)θ
,

where θ = mgu(l, u),
lθ ⪯̸ rθ, sθ ⪯̸ tθ,
and s not a variable,

Eq. Resolution
s ̸≈ t ∨ C

Cθ
, where θ = mgu(s, t),

Eq. Factoring
s≈ t ∨ s′ ≈ t′ ∨ C

(s≈ t ∨ t ̸≈ t′ ∨ C)θ
,

where θ = mgu(s, s′),
sθ ⪯̸ tθ and tθ ⪯̸ t′θ,

These rules, when applied exhaustively, are refutationally complete: if a
set of clauses is unsatisfiable then there is a refutation in finite steps, if
it is satisfiable, it may stop or loop forever.

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021
5



Introduction Superposition Simplifications Implementation

Superposition

But we can also show that there are certain simplification rules that do
not break completeness.

Tautology
(((((s≈ s ∨ C

Eq. resolution �����s ̸≈ s ∨ C

C

Subsumption
��Cθ C ����C ∨D C

Demodulation
l ≈ r �

��C[lθ]

C[lθ→ rθ]
,

where lθ ≻ rθ,
and lθ ≈ rθ ≺ C[lθ]

. . .

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021
6



Introduction Superposition Simplifications Implementation

Superposition

But we can also show that there are certain simplification rules that do
not break completeness.

Tautology
(((((s≈ s ∨ C

Eq. resolution �����s ̸≈ s ∨ C

C

Subsumption
��Cθ C ����C ∨D C

Demodulation
l ≈ r �

��C[lθ]

C[lθ→ rθ]
,

where lθ ≻ rθ,
and lθ ≈ rθ ≺ C[lθ]

. . .

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021
6



Introduction Superposition Simplifications Implementation

Superposition

But we can also show that there are certain simplification rules that do
not break completeness.

Tautology
(((((s≈ s ∨ C

Eq. resolution �����s ̸≈ s ∨ C

C

Subsumption
��Cθ C ����C ∨D C

Demodulation
l ≈ r �

��C[lθ]

C[lθ→ rθ]
,

where lθ ≻ rθ,
and lθ ≈ rθ ≺ C[lθ]

. . .

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021
6



Introduction Superposition Simplifications Implementation

Superposition

But we can also show that there are certain simplification rules that do
not break completeness.

Tautology
(((((s≈ s ∨ C

Eq. resolution �����s ̸≈ s ∨ C

C

Subsumption
��Cθ C ����C ∨D C

Demodulation
l ≈ r �

��C[lθ]

C[lθ→ rθ]
,

where lθ ≻ rθ,
and lθ ≈ rθ ≺ C[lθ]

. . .

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021
6



Introduction Superposition Simplifications Implementation

Superposition

But we can also show that there are certain simplification rules that do
not break completeness.

Tautology
(((((s≈ s ∨ C

Eq. resolution �����s ̸≈ s ∨ C

C

Subsumption
��Cθ C ����C ∨D C

Demodulation
l ≈ r �

��C[lθ]

C[lθ→ rθ]
,

where lθ ≻ rθ,
and lθ ≈ rθ ≺ C[lθ]

. . .

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021
6



Introduction Superposition Simplifications Implementation

Superposition — Model construction

Proof of completeness: inductive model construction [Bachmair Ganzinger].

Sketch (given a saturated set of clauses S):

• Fix a simplification ordering ≻ on clauses,
• Take the set G of all ground instances of clauses in S,
• Recursively define an interpretation for G,
• Prove by induction: this interpretation is a model for G.

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021
7



Introduction Superposition Simplifications Implementation

Superposition — Model construction

Proof of completeness: inductive model construction [Bachmair Ganzinger].
Sketch (given a saturated set of clauses S):

• Fix a simplification ordering ≻ on clauses,

• Take the set G of all ground instances of clauses in S,
• Recursively define an interpretation for G,
• Prove by induction: this interpretation is a model for G.

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021
7



Introduction Superposition Simplifications Implementation

Superposition — Model construction

Proof of completeness: inductive model construction [Bachmair Ganzinger].
Sketch (given a saturated set of clauses S):

• Fix a simplification ordering ≻ on clauses,
• Take the set G of all ground instances of clauses in S,

• Recursively define an interpretation for G,
• Prove by induction: this interpretation is a model for G.

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021
7



Introduction Superposition Simplifications Implementation

Superposition — Model construction

Proof of completeness: inductive model construction [Bachmair Ganzinger].
Sketch (given a saturated set of clauses S):

• Fix a simplification ordering ≻ on clauses,
• Take the set G of all ground instances of clauses in S,
• Recursively define an interpretation for G,

• Prove by induction: this interpretation is a model for G.

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021
7



Introduction Superposition Simplifications Implementation

Superposition — Model construction

Proof of completeness: inductive model construction [Bachmair Ganzinger].
Sketch (given a saturated set of clauses S):

• Fix a simplification ordering ≻ on clauses,
• Take the set G of all ground instances of clauses in S,
• Recursively define an interpretation for G,
• Prove by induction: this interpretation is a model for G.

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021
7



Introduction Superposition Simplifications Implementation

Superposition — Model construction

Proof of completeness: inductive model construction [Bachmair Ganzinger].
Sketch (given a saturated set of clauses S):

• Fix a simplification ordering ≻ on clauses,
• Take the set G of all ground instances of clauses in S,
• Recursively define an interpretation for G,
• Prove by induction: this interpretation is a model for G.

Define saturation thus:
• A set is saturated if there are no inferences with premises in the set

whose conclusion is not also in the set.

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021
7



Introduction Superposition Simplifications Implementation

Superposition — Model construction

Proof of completeness: inductive model construction [Bachmair Ganzinger].
Sketch (given a saturated-up-to-redundancy set of clauses S):

• Fix a simplification ordering ≻ on clauses,
• Take the set G of all ground instances of clauses in S,
• Recursively define an interpretation for G,
• Prove by induction: this interpretation is a model for G.

Define saturation up to redundancy thus:
• A set is saturated if there are no non-redundant inferences with

non-redundant premises in the set.

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021
7



Introduction Superposition Simplifications Implementation

Superposition — Model construction

Proof of completeness: inductive model construction [Bachmair Ganzinger].
Sketch (given a saturated-up-to-redundancy set of clauses S):

• Fix a simplification ordering ≻ on clauses,
• Take the set G of all ground instances of clauses in S,
• Recursively define an interpretation for G,
• Prove by induction: this interpretation is a model for G.

Define saturation up to redundancy thus:
• A set is saturated if there are no non-redundant inferences with

non-redundant premises in the set.

Redundant clause (in S)

All ground instances follow from
smaller clauses in G.

Redundant inference (in S)

For all ground instances, conclusion
follows from clauses in G smaller
than the maximal premise.

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021
7



Introduction Superposition Simplifications Implementation

Superposition — Closures

Problem: standard notion of redundancy doesn’t support ground joinability.

Example: rewriting f(b) + (a+ c)≈ c
to a+ (f(b) + c)≈ c
via x+ (y + z)≈ y + (x+ z)

Must be ≺c than deleted clause

f(b) + (a+ c)≈ c ≺c f(b) + (a+ c)≈ a+ (f(b) + c)

Solution: refine the notion of ground instance to ground closure, and
define an ordering where more general is smaller.

Closure:
Pair of term/literal/clause and grounding substitution: t · θ.
Example: of f(x, b), instance f(a, b) becomes f(x, b) · x/a.
Ordering: s · σ ≻tc t · ρ iff either sσ ≻t tρ or else sσ = tρ and s ⊐ t

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021
8



Introduction Superposition Simplifications Implementation

Superposition — Closures

Problem: standard notion of redundancy doesn’t support ground joinability.

Example: rewriting f(b) + (a+ c)≈ c
to a+ (f(b) + c)≈ c
via x+ (y + z)≈ y + (x+ z)

Must be ≺c than deleted clause

f(b) + (a+ c)≈ c ≺c f(b) + (a+ c)≈ a+ (f(b) + c)

Solution: refine the notion of ground instance to ground closure, and
define an ordering where more general is smaller.

Closure:
Pair of term/literal/clause and grounding substitution: t · θ.
Example: of f(x, b), instance f(a, b) becomes f(x, b) · x/a.
Ordering: s · σ ≻tc t · ρ iff either sσ ≻t tρ or else sσ = tρ and s ⊐ t

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021
8



Introduction Superposition Simplifications Implementation

Superposition — Closures

Problem: standard notion of redundancy doesn’t support ground joinability.

Example: rewriting f(b) + (a+ c)≈ c
to a+ (f(b) + c)≈ c
via x+ (y + z)≈ y + (x+ z)

Must be ≺c than deleted clause

f(b) + (a+ c)≈ c ≺c f(b) + (a+ c)≈ a+ (f(b) + c)

Solution: refine the notion of ground instance to ground closure, and
define an ordering where more general is smaller.

Closure:
Pair of term/literal/clause and grounding substitution: t · θ.
Example: of f(x, b), instance f(a, b) becomes f(x, b) · x/a.
Ordering: s · σ ≻tc t · ρ iff either sσ ≻t tρ or else sσ = tρ and s ⊐ t

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021
8



Introduction Superposition Simplifications Implementation

Superposition — Closures

Problem: standard notion of redundancy doesn’t support ground joinability.

Example: rewriting f(b) + (a+ c)≈ c
to a+ (f(b) + c)≈ c
via x+ (y + z)≈ y + (x+ z)

Must be ≺c than deleted clause

f(b) + (a+ c)≈ c ≺c f(b) + (a+ c)≈ a+ (f(b) + c)

Solution: refine the notion of ground instance to ground closure, and
define an ordering where more general is smaller.

Closure:
Pair of term/literal/clause and grounding substitution: t · θ.
Example: of f(x, b), instance f(a, b) becomes f(x, b) · x/a.
Ordering: s · σ ≻tc t · ρ iff either sσ ≻t tρ or else sσ = tρ and s ⊐ t

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021
8



Introduction Superposition Simplifications Implementation

Superposition — Closures

Problem: standard notion of redundancy doesn’t support ground joinability.

Example: rewriting f(b) + (a+ c)≈ c
to a+ (f(b) + c)≈ c
via x+ (y + z)≈ y + (x+ z)

Must be ≺c than deleted clause

f(b) + (a+ c)≈ c ≺c f(b) + (a+ c)≈ a+ (f(b) + c)

Solution: refine the notion of ground instance to ground closure, and
define an ordering where more general is smaller.

Closure:
Pair of term/literal/clause and grounding substitution: t · θ.
Example: of f(x, b), instance f(a, b) becomes f(x, b) · x/a.
Ordering: s · σ ≻tc t · ρ iff either sσ ≻t tρ or else sσ = tρ and s ⊐ t

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021
8



Introduction Superposition Simplifications Implementation

Superposition — Closures

Problem: standard notion of redundancy doesn’t support ground joinability.

Example: rewriting f(b) + (a+ c)≈ c
to a+ (f(b) + c)≈ c
via x+ (y + z)≈ y + (x+ z)

Must be ≺c than deleted clause

f(b) + (a+ c)≈ c ≺c f(b) + (a+ c)≈ a+ (f(b) + c)

Solution: refine the notion of ground instance to ground closure, and
define an ordering where more general is smaller.

Closure:
Pair of term/literal/clause and grounding substitution: t · θ.
Example: of f(x, b), instance f(a, b) becomes f(x, b) · x/a.
Ordering: s · σ ≻tc t · ρ iff either sσ ≻t tρ or else sσ = tρ and s ⊐ t

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021
8



Introduction Superposition Simplifications Implementation

Superposition — Closures

Problem: standard notion of redundancy doesn’t support ground joinability.

Example: rewriting f(b) + (a+ c)≈ c
to a+ (f(b) + c)≈ c
via x+ (y + z)≈ y + (x+ z)

Must be ≺cc than deleted clause

(f(b)+(a+c)≈ c) · id ≻cc (x+(y+z)≈ y+(x+z)) · [x/f(b), y/a, z/c]

Solution: refine the notion of ground instance to ground closure, and
define an ordering where more general is smaller.

Closure:
Pair of term/literal/clause and grounding substitution: t · θ.
Example: of f(x, b), instance f(a, b) becomes f(x, b) · x/a.
Ordering: s · σ ≻tc t · ρ iff either sσ ≻t tρ or else sσ = tρ and s ⊐ t

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021
8



Introduction Superposition Simplifications Implementation

Superposition — Model construction

Proof of completeness: inductive model construction [Bachmair Ganzinger].
Sketch (given a saturated-up-to-closure-redundancy set of clauses S):

• Fix an ordering ≻ on clauses,
• Take the set G of all ground closures of clauses in S,
• Recursively define an interpretation for G,
• Prove by induction: this interpretation is a model for G.

Define saturation up to closure redundancy thus:
• A set is saturated if there are no non-redundant inferences with

non-redundant premises in the set.

Closure redundant clause (in S)

All ground closures follow from
smaller closures in G.

Closure redundant inference (in S)

All ground closures of the
conclusion follow from closures in G
smaller than the maximal ground
closure of the premises.

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021
9



Introduction Superposition Simplifications Implementation

Superposition — Model construction

Theorem
The superposition inference system is refutationally complete up to
closure redundancy.

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021
10



Introduction Superposition Simplifications Implementation

Superposition — Model construction

Theorem
The superposition inference system is refutationally complete up to
closure redundancy.

This is nontrivial!

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021
10



Introduction Superposition Simplifications Implementation

Simplifications — AC joinability

We can now justify the following AC redundancies. Let ACf be

xy ≈ yx (xy)z ≈ x(yz) x(yz)≈ y(xz)

then

AC joinability (pos)
(((((s≈ t ∨ C ACf

,
where s ↓ACf

t

and s≈ t ∨ C ̸∈ ACf

AC joinability (neg) �����s ̸≈ t ∨ C ACf

C
, where s ↓ACf

t

Corollary 1
AC joinability is a simplification rule in the superposition calculus.

that is, we can delete/simplify any equation/inequation where both sides
are equal modulo AC. Includes all inferences between ACf !

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021
11



Introduction Superposition Simplifications Implementation

Simplifications — AC joinability

We can now justify the following AC redundancies. Let ACf be

xy ≈ yx (xy)z ≈ x(yz) x(yz)≈ y(xz)

then

AC joinability (pos)
(((((s≈ t ∨ C ACf

,
where s ↓ACf

t

and s≈ t ∨ C ̸∈ ACf

AC joinability (neg) �����s ̸≈ t ∨ C ACf

C
, where s ↓ACf

t

Corollary 1
AC joinability is a simplification rule in the superposition calculus.

that is, we can delete/simplify any equation/inequation where both sides
are equal modulo AC. Includes all inferences between ACf !

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021
11



Introduction Superposition Simplifications Implementation

Simplifications — AC joinability

We can now justify the following AC redundancies. Let ACf be

xy ≈ yx (xy)z ≈ x(yz) x(yz)≈ y(xz)

then

AC joinability (pos)
(((((s≈ t ∨ C ACf

,
where s ↓ACf

t

and s≈ t ∨ C ̸∈ ACf

AC joinability (neg) �����s ̸≈ t ∨ C ACf

C
, where s ↓ACf

t

Corollary 1
AC joinability is a simplification rule in the superposition calculus.

that is, we can delete/simplify any equation/inequation where both sides
are equal modulo AC.

Includes all inferences between ACf !

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021
11



Introduction Superposition Simplifications Implementation

Simplifications — AC joinability

We can now justify the following AC redundancies. Let ACf be

xy ≈ yx (xy)z ≈ x(yz) x(yz)≈ y(xz)

then

AC joinability (pos)
(((((s≈ t ∨ C ACf

,
where s ↓ACf

t

and s≈ t ∨ C ̸∈ ACf

AC joinability (neg) �����s ̸≈ t ∨ C ACf

C
, where s ↓ACf

t

Corollary 1
AC joinability is a simplification rule in the superposition calculus.

that is, we can delete/simplify any equation/inequation where both sides
are equal modulo AC. Includes all inferences between ACf !

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021
11



Introduction Superposition Simplifications Implementation

Simplifications — AC normalisation

Sometimes we can simplify AC terms by demodulation:
a+ (c+ b) → a+ (b+ c).

Sometimes we can’t: b+ (x+ a) → a+ (x+ b).

AC normalisation ((((((
C[t1(· · · tn)] ACf

C[t′1(· · · t′n)]
,

where t1, . . . ≻lex t′1, . . .
and {t1, . . . } = {t′1, . . . }

Corollary 2
AC normalisation is a simplification rule in the superposition calculus.

Advantages: more redundant clauses discarded vs demodulation, faster
implementation since we don’t need to store prolific AC axioms in indices.

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021
12



Introduction Superposition Simplifications Implementation

Simplifications — AC normalisation

Sometimes we can simplify AC terms by demodulation:
a+ (c+ b) → a+ (b+ c).

Sometimes we can’t: b+ (x+ a) → a+ (x+ b).

AC normalisation ((((((
C[t1(· · · tn)] ACf

C[t′1(· · · t′n)]
,

where t1, . . . ≻lex t′1, . . .
and {t1, . . . } = {t′1, . . . }

Corollary 2
AC normalisation is a simplification rule in the superposition calculus.

Advantages: more redundant clauses discarded vs demodulation, faster
implementation since we don’t need to store prolific AC axioms in indices.

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021
12



Introduction Superposition Simplifications Implementation

Simplifications — AC normalisation

Sometimes we can simplify AC terms by demodulation:
a+ (c+ b) → a+ (b+ c).

Sometimes we can’t: b+ (x+ a) → a+ (x+ b).

AC normalisation ((((((
C[t1(· · · tn)] ACf

C[t′1(· · · t′n)]
,

where t1, . . . ≻lex t′1, . . .
and {t1, . . . } = {t′1, . . . }

Corollary 2
AC normalisation is a simplification rule in the superposition calculus.

Advantages: more redundant clauses discarded vs demodulation, faster
implementation since we don’t need to store prolific AC axioms in indices.

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021
12



Introduction Superposition Simplifications Implementation

Simplifications — Encompassment demodulation

We have also improved the constraints for demodulation:

Demodulation
l ≈ r ���C[lθ]

C[lθ→ rθ]
,

where lθ ≻ rθ
and lθ ≈ rθ ≺ C[lθ].

Corollary 3
Encompassment demodulation is a simplification rule in the
superposition calculus.

This enables demodulation at more places than before (irrespective of
AC), and also faster implementation.

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021
13



Introduction Superposition Simplifications Implementation

Simplifications — Encompassment demodulation

We have also improved the constraints for demodulation:

Encompassment
Demodulation

l ≈ r ���C[lθ]

C[lθ→ rθ]
,

where lθ ≻ rθ,
and either lθ ≈ rθ ≺ C[lθ],
or else θ not a renaming.

Corollary 3
Encompassment demodulation is a simplification rule in the
superposition calculus.

This enables demodulation at more places than before (irrespective of
AC), and also faster implementation.

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021
13



Introduction Superposition Simplifications Implementation

Simplifications — Encompassment demodulation

We have also improved the constraints for demodulation:

Encompassment
Demodulation

l ≈ r ���C[lθ]

C[lθ→ rθ]
,

where lθ ≻ rθ,
and either lθ ≈ rθ ≺ C[lθ],
or else θ not a renaming.

Corollary 3
Encompassment demodulation is a simplification rule in the
superposition calculus.

This enables demodulation at more places than before (irrespective of
AC), and also faster implementation.

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021
13



Introduction Superposition Simplifications Implementation

Simplifications — Further work

More rules are under investigation, enabled by the theoretical proof of
completeness up to closure redundancy.
• Extensions of AC (AC + inverses, AC + idempotence, etc.)
• AC demodulation
• . . .

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021
14



Introduction Superposition Simplifications Implementation

Implementation

iProver is an automated, first-order theorem prover.
• Implements several calculi (Inst-Gen, superposition) and several

strategies for running them, many advanced techniques
• Can run in auto mode, but can also be extensively customised
• Free software (GPL), written in OCaml
• Good performance (2nd place in FOF, FNT, LTB at CASC 2021,

winner in parallel single-query at SMTCOMP 2021)

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021
15



Introduction Superposition Simplifications Implementation

Thank you

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021
16


	Introduction
	

	Superposition
	

	Simplifications
	

	Implementation
	

	
	


