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Introduction

First-order automated theorem provers are powerful tools for general-
purpose problem solving, with many applications:

o Mathematics,

e Software verification, hardware verification,

Knowledge-base reasoning and ontologies,
® Routines in higher-order provers
® Etc.
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Introduction

First-order automated theorem provers are powerful tools for general-
purpose problem solving, with many applications:

Mathematics,

Software verification, hardware verification,

Knowledge-base reasoning and ontologies,

® Routines in higher-order provers

® Etc.
Main advantage Disadvantage
® \/ery general and expressive ® Struggles in certain domains

and even in simple problems
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Associativity-commutativity

A binary function ‘+’ is associative-commutative (AC) if
r+y~ytz (Z+y)+tzrz+(y+2)

Ubiquitous, contained in important theories such as arithmetic, etc.
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Associativity-commutativity

A binary function ‘+’ is associative-commutative (AC) if
rT+y~Ry+zT (z+y)+zma+(y+2)

Ubiquitous, contained in important theories such as arithmetic, etc.
Problem: under superposition, these equations recombine to produce an
infinite number of consequences

r+(y+2)xz+ (v+y)
z+(y+2)~y+(z+x)
z+(y+2)=y+2)+z
z+y+GE+w)=y+(z+w)+e

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021



Introduction Superposition Simplifications Implementation
0000 000000 0000 (o]

Associativity-commutativity

A binary function ‘+’ is associative-commutative (AC) if
rT+y~Ry+zT (+y)+z=z+(y+2)

Ubiquitous, contained in important theories such as arithmetic, etc.
Problem: under superposition, these equations recombine to produce an
infinite number of consequences

r+(y+2)xz+ (v+y)
z+(y+2)~y+(z+x)
z+(y+2)=y+2)+z
z+y+GE+w)=y+(z+w)+e

(2n—2)!

2
m) equations for n variables)

(more precisely, there are n! x (
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Ground joinability

Due to its importance, AC has been the object of active research for
decades.
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Ground joinability

Due to its importance, AC has been the object of active research for
decades.

Knuth-Bendix completion—based provers use ground joinability criteria to
delete equations s ~ t where s and t are equal modulo AC [Martin et al
1990, Avenhaus et al 2003]

Examples: Waldmeister, Twee, etc.
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Ground joinability

Due to its importance, AC has been the object of active research for
decades.

Knuth-Bendix completion—based provers use ground joinability criteria to
delete equations s ~ t where s and t are equal modulo AC [Martin et al
1990, Avenhaus et al 2003]

Examples: Waldmeister, Twee, etc.
Very good performance!

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021



Introduction Superposition Simplifications Implementation
[e]e] e} 000000 0000 (o]

Ground joinability

Due to its importance, AC has been the object of active research for
decades.

Knuth-Bendix completion—based provers use ground joinability criteria to
delete equations s ~ t where s and t are equal modulo AC [Martin et al
1990, Avenhaus et al 2003]

Examples: Waldmeister, Twee, etc.
Very good performance!

Limitations: known proofs apply to Knuth-Bendix completion (i.e. unit
equality only) and are based on the technique of proof orderings.

There existed no proof for full clausal first-order logic, up to now.

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021



Introduction Superposition Simplifications Implementation
oooe 000000 0000 (o]

Results

Main results of this paper:

® New notion of closure redundancy, which can be used to justify AC
simplifications;
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Results

Main results of this paper:

® New notion of closure redundancy, which can be used to justify AC
simplifications;

® Proof that the superposition calculus is refutationally complete wrt.
“saturation up to closure redundancy”;
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Results

Main results of this paper:
® New notion of closure redundancy, which can be used to justify AC
simplifications;
® Proof that the superposition calculus is refutationally complete wrt.
“saturation up to closure redundancy”;

e As corollaries, that ground joinability is a redundancy for the
superposition calculus, as well as stronger AC normalisation and
encompassment demodulation;
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Results

Main results of this paper:
® New notion of closure redundancy, which can be used to justify AC
simplifications;
® Proof that the superposition calculus is refutationally complete wrt.
“saturation up to closure redundancy”;

e As corollaries, that ground joinability is a redundancy for the
superposition calculus, as well as stronger AC normalisation and
encompassment demodulation;

e That the proof also opens up the door for further AC simplifi-
cations in the future (currently being researched)
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Superposition

Superposition is comprised of the following inference rules:

I~rVC sfuAtyD  Whered=mgu(lu),

Superposition - , 1A, s0 A0,
(sfurs rj=tvCvV D)o and s not a variable,
sEtvVC

Eq. Resolution a0 where 6 = mgu(s, t),

setVs~t'vC where 6 = mgu(s, s’),
(stVizgt ve)e’ s £ t0 and t0 £ t'0),

Eq. Factoring
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Superposition

Superposition is comprised of the following inference rules:

I~rVC sfuAtyD  Whered=mgu(lu),

Superposition - , 1A, s0 A0,
(sfurs rj=tvCvV D)o and s not a variable,
sEtvVC

Eq. Resolution a0 where 6 = mgu(s, t),

setVs~t'vC where 6 = mgu(s, s’),
(stVizgt ve)e’ s £ t0 and t0 £ t'0),

Eq. Factoring

These rules, when applied exhaustively, are refutationally complete: if a
set of clauses is unsatisfiable then there is a refutation in finite steps, if
it is satisfiable, it may stop or loop forever.
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Superposition

But we can also show that there are certain simplification rules that do
not break completeness.
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Superposition

But we can also show that there are certain simplification rules that do
not break completeness.

S 'S"V'Cr
Tautology -
Eq. resolution T
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Superposition

But we can also show that there are certain simplification rules that do
not break completeness.

S 'S"V'Cr
Tautology -
Eq. resolution T

cy ¢ CvD C

Subsumption
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Superposition

But we can also show that there are certain simplification rules that do
not break completeness.

7377%'8"\7'Cr
Tautology -
Eq. resolution o

C
. 06 ¢ CvD O
Subsumption
~r C

et T—M where 16 = 70,

C[16 — r0] " and 0 =1 < Cll0]
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Superposition

But we can also show that there are certain simplification rules that do
not break completeness.

7377%'8"\7'Cr
Tautology -
Eq. resolution o

C
. 06 ¢ CvD O
Subsumption
~r C

et T—M where 16 = 70,

C[16 — r0] " and 0 =1 < Cll0]
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Superposition — Model construction

Proof of completeness: inductive model construction [Bachmair Ganzinger].
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Superposition — Model construction
Proof of completeness: inductive model construction [Bachmair Ganzinger].

Sketch (given a saturated set of clauses S):

e Fix a simplification ordering = on clauses,
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Superposition — Model construction

Proof of completeness: inductive model construction [Bachmair Ganzinger].
Sketch (given a saturated set of clauses S):
e Fix a simplification ordering = on clauses,

® Take the set G of all ground instances of clauses in S,
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Superposition — Model construction

Proof of completeness: inductive model construction [Bachmair Ganzinger].
Sketch (given a saturated set of clauses S):

e Fix a simplification ordering = on clauses,

® Take the set G of all ground instances of clauses in S,

® Recursively define an interpretation for G,
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Superposition — Model construction

Proof of completeness: inductive model construction [Bachmair Ganzinger].
Sketch (given a saturated set of clauses S):

e Fix a simplification ordering = on clauses,

Take the set G of all ground instances of clauses in S,

Recursively define an interpretation for G,

Prove by induction: this interpretation is a model for G.
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Superposition — Model construction

Proof of completeness: inductive model construction [Bachmair Ganzinger].
Sketch (given a saturated set of clauses S):

e Fix a simplification ordering = on clauses,

Take the set G of all ground instances of clauses in S,

Recursively define an interpretation for G,
® Prove by induction: this interpretation is a model for G.
Define saturation thus:

® A set is saturated if there are no inferences with premises in the set
whose conclusion is not also in the set.
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Superposition — Model construction

Proof of completeness: inductive model construction [Bachmair Ganzinger].
Sketch (given a saturated-up-to-redundancy set of clauses S):

e Fix a simplification ordering = on clauses,

Take the set G of all ground instances of clauses in S,

Recursively define an interpretation for G,
® Prove by induction: this interpretation is a model for G.
Define saturation up to redundancy thus:

® A set is saturated if there are no non-redundant inferences with
non-redundant premises in the set.
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Superposition — Model construction

Proof of completeness: inductive model construction [Bachmair Ganzinger].
Sketch (given a saturated-up-to-redundancy set of clauses S):

e Fix a simplification ordering > on clauses,

Take the set G of all ground instances of clauses in S,
® Recursively define an interpretation for G,
® Prove by induction: this interpretation is a model for G.
Define saturation up to redundancy thus:

® A set is saturated if there are no non-redundant inferences with
non-redundant premises in the set.

Redundant clause (in S) Redundant inference (in S)
All ground instances follow from For all ground instances, conclusion
smaller clauses in G. follows from clauses in G smaller

than the maximal premise.
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Superposition — Closures

Problem: standard notion of redundancy doesn't support ground joinability.
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Superposition — Closures

Problem: standard notion of redundancy doesn't support ground joinability.

Example: rewriting f(b) + (a +¢) = ¢
to a+ (f(b)+c)=c
viaz+ (y+2)~y+(z+2)
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Superposition — Closures

Problem: standard notion of redundancy doesn't support ground joinability.

Example: rewriting f(b) + (a +¢) = ¢

to a+ (f(b)+c) = 73 Must be <. than deleted clause
via x+(y+z)~y+(az+z
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Superposition — Closures

Problem: standard notion of redundancy doesn't support ground joinability.

Example: rewriting f(b) + (a +¢) = ¢ 7
to a+ (f(b) + C) 3 Must be <. than deleted clause
via x+(y+z)~y—|—(az+z

fO)+(a+c)=c <. f(b)+(a+c)=a+ (f(b)+c)
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Superposition — Closures

Problem: standard notion of redundancy doesn't support ground joinability.

Example: rewriting f(b) + (a +¢) = ¢

to a+ (f(b)+c) = 73 Must be <. than deleted clause
via x+(y+z)~y+(az+z

fO)+(a+c)=c <. f(b)+(a+c)=a+ (f(b)+c)

Solution: refine the notion of ground instance to ground closure, and

define an ordering where more general is smaller.
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Superposition — Closures

Problem: standard notion of redundancy doesn't support ground joinability.

Example: rewriting f(b) + (a +¢) = ¢ 7
to a+ (f(b)+c) = 3 Must be <. than deleted clause
via x+(y+z)~y+(az+z

fO)+(a+c)=c <. f(b)+(a+c)=a+ (f(b)+c)
Solution: refine the notion of ground instance to ground closure, and

define an ordering where more general is smaller.

Closure:

Pair of term/literal/clause and grounding substitution: ¢ - 6.
Example: of f(x,b), instance f(a,b) becomes f(z,b) - x/a.
Ordering: s -0 =4 t - p iff either so >, tp or else soc =tp and s It
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Superposition — Closures

Problem: standard notion of redundancy doesn't support ground joinability.

Example: rewriting f(b) + (a +¢) = ¢ 7
to a+ (f(b) + C) 3 Must be <. than deleted clause
via x+(y+z)~y+(az+z

(fb)+(ate) =) -id e (24(y+2) =y+(2+2)) - [2/f(b), y/a, 2/c]

Solution: refine the notion of ground instance to ground closure, and
define an ordering where more general is smaller.
Closure:

Pair of term/literal/clause and grounding substitution: ¢ - 6.
Example: of f(x,b), instance f(a,b) becomes f(z,b) - x/a.
Ordering: s -0 =4 t - p iff either so >, tp or else soc =tp and s It
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Superposition — Model construction

Proof of completeness: inductive model construction [Bachmair Ganzinger].
Sketch (given a saturated-up-to-closure-redundancy set of clauses S):

® Fix an ordering > on clauses,

® Take the set GG of all ground closures of clauses in S,

® Recursively define an interpretation for G,

® Prove by induction: this interpretation is a model for G.
Define saturation up to closure redundancy thus:

® A set is saturated if there are no non-redundant inferences with

non-redundant premises in the set.

Closure redundant clause (in S) Closure redundant inference (in S)
All ground closures follow from All ground closures of the
smaller closures in G. conclusion follow from closures in G

smaller than the maximal ground
closure of the premises.
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Superposition — Model construction

Theorem

The superposition inference system is refutationally complete up to
closure redundancy.

AC simplifications and closure redundancy in the superposition calculus André Duarte — 8/Sep/2021



Introduction Superposition Simplifications Implementation
0000 00000e 0000 (o]

Superposition — Model construction

Theorem

The superposition inference system is refutationally complete up to
closure redundancy.

This is nontriviall
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Simplifications — AC joinability

We can now justify the following AC redundancies. Let AC; be

zyryr  (wy)zra(yz)  a(yz) ~y(ez)
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Simplifications — AC joinability

We can now justify the following AC redundancies. Let AC; be

zyryr  (wy)zra(yz)  a(yz) ~y(ez)

then
s=tv(C AC
AC joinability (pos) f , ;Vr}lfr;i ié/c(fj t ¢ AC;
o s#EEVC ACy
AC joinability (neg) - 5 ,  where s {ac, t
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Simplifications — AC joinability

We can now justify the following AC redundancies. Let AC; be

zy~yr  (zy)z=z(yz)  z(y2) = y(e2)
then

s=tvC AC
AC joinability (pos) 5 ;NI}:CTISG :; jéc(f? t% ACy

SEEVO AG
C )

AC joinability (neg) where s Lac, t

Corollary 1
AC joinability is a simplification rule in the superposition calculus.

that is, we can delete/simplify any equation/inequation where both sides
are equal modulo AC.
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Simplifications — AC joinability

We can now justify the following AC redundancies. Let AC; be

zy~yr  (zy)z=z(yz)  z(y2) = y(e2)
then

s=tvC AC
AC joinability (pos) 5 :r}:;r; :; jéc(f? t% ACy

SEEVO AG
C )

AC joinability (neg) where s Lac, t

Corollary 1
AC joinability is a simplification rule in the superposition calculus.

that is, we can delete/simplify any equation/inequation where both sides
are equal modulo AC. Includes all inferences between AC/!
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Simplifications — AC normalisation

Sometimes we can simplify AC terms by demodulation:
a+(c+b) —a+ (b+c).
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Simplifications — AC normalisation
Sometimes we can simplify AC terms by demodulation:

a+(c+b) —a+ (b+c).

Sometimes we can't: b+ (z +a) = a+ (z +b).
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Simplifications — AC normalisation

Sometimes we can simplify AC terms by demodulation:
a+(c+b) —a+ (b+c).

Sometimes we can't: b+ (z +a) = a+ (z +b).

L Cltsl-—tn)] ACy  where tq, ... >lox oo
AC normalisation ; ; ) p
Cth(---t))] and {t1,...}={t},...}

Corollary 2
AC normalisation is a simplification rule in the superposition calculus.

Advantages: more redundant clauses discarded vs demodulation, faster
implementation since we don't need to store prolific AC axioms in indices.
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Simplifications — Encompassment demodulation

We have also improved the constraints for demodulation:

where [0 = 10

I~r Clif
L CWL - nd 10~ 6 < O]

Demodulation :
C[l0 — r0)
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Simplifications — Encompassment demodulation

We have also improved the constraints for demodulation:

where 10 >~ 10,
, and either [0 ~ r0 < C|[l6],

or else # not a renaming.

Encompassment =71 C[if]
Demodulation C[i6 — 6]
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Simplifications — Encompassment demodulation

We have also improved the constraints for demodulation:

where 10 >~ 10,
and either 10 ~ 76 < C[l0],
or else # not a renaming.

Encompassment =71 C[if]
Demodulation C[i6 — 6]

)

Corollary 3
Encompassment demodulation is a simplification rule in the
superposition calculus.

This enables demodulation at more places than before (irrespective of
AC), and also faster implementation.
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Simplifications — Further work

More rules are under investigation, enabled by the theoretical proof of
completeness up to closure redundancy.

e Extensions of AC (AC + inverses, AC + idempotence, etc.)
® AC demodulation
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Implementation

iProver is an automated, first-order theorem prover.
¢ Implements several calculi (Inst-Gen, superposition) and several
strategies for running them, many advanced techniques
® Can run in auto mode, but can also be extensively customised
® Free software (GPL), written in OCaml
¢ Good performance (2nd place in FOF, FNT, LTB at CASC 2021,
winner in parallel single-query at SMTCOMP 2021)

—
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Thank you
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